Pechamento

De testwiki
Saltar á navegación Saltar á procura

En matemáticas, un subconxunto dun conxunto dado está pechado baixo unha operación do conxunto maior se ao realizar esa operación sobre os membros do subconxunto sempre produce un membro dese subconxunto. Por exemplo, os números naturais están pechados mediante a suma, mais non mediante a resta: Modelo:Nowrap non é un número natural, aínda que tanto 1 como 2 si que o son.

Do mesmo xeito, dise que un subconxunto está pechado baixo unha colección de operacións se está pechado baixo cada unha das operacións individualmente.

O pechamento (ou peche) dun subconxunto é o resultado dun operador de pechamento aplicado ao subconxunto. O peche dun subconxunto baixo algunhas operacións é o superconxunto máis pequeno que se pecha baixo estas operacións. A miúdo chámase conxunto xerado (span en inglés), por exemplo espazo vectorial xerado).

Definicións

Sexa Modelo:Mvar un conxunto equipado con un ou varios métodos para producir elementos de Modelo:Mvar a partir doutros elementos de Modelo:Mvar. Dise que un subconxunto Modelo:Mvar de Modelo:Mvar está pechado baixo estes métodos, se, cando todos os elementos de entrada están en Modelo:Mvar, entón todos os resultados posíbeis están tamén en Modelo:Mvar. Ás veces, tamén se pode dicir que Modelo:Mvar ten a propiedade de pechamento.

A principal propiedade dos conxuntos pechados, que se deduce inmediatamente da definición, é que toda intersección de conxuntos pechados é un conxunto pechado. Daí dedúcese que para cada subconxunto Modelo:Mvar de Modelo:Mvar, hai un subconxunto Modelo:Mvar pechado máis pequeno de Modelo:Mvar tal que YX (é a intersección de todos os subconxuntos pechados que conteñen Modelo:Mvar ). Segundo o contexto, Modelo:Mvar chámase peche de Modelo:Mvar ou o conxunto xerado por Modelo:Mvar .

Os conceptos de conxuntos pechados e peche adoitan estenderse a calquera propiedade de subconxuntos que sexan estábeis baixo a intersección; é dicir, toda intersección de subconxuntos que teñen a propiedade tamén ten a propiedade. Por exemplo, en n, un conxunto coa topoloxía de Zariski, tamén coñecido como conxunto alxébrico, é o conxunto dos ceros comúns dunha familia de polinomios, e o peche de Zariski dun conxunto Modelo:Mvar de puntos é o conxunto alxébrico máis pequeno que contén Modelo:Mvar.

Nas estruturas alxébricas

Unha estrutura alxébrica é un conxunto equipado con operacións que satisfán algúns axiomas. Consulte Estrutura alxébrica para obter máis detalles. Un conxunto cunha soa operación binaria que está pechada chámase magma.

Neste contexto, dada unha estrutura alxébrica Modelo:Mvar, unha subestrutura de Modelo:Mvar é un subconxunto que está pechado en todas as operacións de Modelo:Mvar. Unha subestrutura é unha estrutura alxébrica do mesmo tipo que Modelo:Mvar. Dedúcese que, nun exemplo específico, cando se demostra o pechamento, non hai que comprobar os axiomas para demostrar que unha subestrutura é unha estrutura do mesmo tipo.

Dado un subconxunto Modelo:Mvar dunha estrutura alxébrica Modelo:Mvar, o peche de Modelo:Mvar é a subestrutura máis pequena de Modelo:Mvar que está pechada en todas as operacións de Modelo:Mvar. No contexto das estruturas alxébricas, este peche denomínase xeralmente a subestrutura xerada ou que abrangue Modelo:Mvar, e dise que Modelo:Mvar é un conxunto xerador da subestrutura.

Por exemplo, un grupo é un conxunto cunha operación asociativa, moitas veces chamada multiplicación, cun elemento de identidade, de xeito que cada elemento ten un elemento inverso. Así, un subconxunto non baleiro dun grupo que está pechado baixo multiplicación e inversión é un grupo que se chama subgrupo. O subgrupo xerado por un só elemento, é dicir, o peche deste elemento, chámase grupo cíclico.

En álxebra linear, o peche dun subconxunto non baleiro dun espazo vectorial (en operacións de espazo vectorial, é dicir, suma e multiplicación escalar) é o espazo vectorial xerado deste subconxunto. É un espazo vectorial polo resultado xeral anterior, e pódese probar facilmente que é o conxunto de combinacións lineares de elementos do subconxunto.

Exemplos similares pódense dar para case todas as estruturas alxébricas, con, ás veces, algunha terminoloxía específica. Por exemplo, nun anel conmutativo, o peche dun só elemento baixo operacións ideais chámase ideal principal.

Relacións binarias

Unha relación binaria nun conxunto Modelo:Mvar pódese definir como un subconxunto Modelo:Mvar de A×A, o conxunto dos pares ordenados de elementos de Modelo:Mvar. A notación xRy úsase habitualmente para (x,y)R. Pódense usar moitas propiedades ou operacións sobre relacións para definir peches. Algunhas das máis comúns seguen:

Reflexividade
Unha relación Modelo:Mvar do conxunto Modelo:Mvar é reflexiva se (x,x)R para cada xA. Como toda intersección de relacións reflexivas é reflexiva, isto define un peche. O peche reflexivo dunha relación Modelo:Mvar é por tanto R{(x,x)xA}.
Simetría
A simetría é a operación unaria A×A que mapea (x,y) a (y,x). Unha relación é simétrica se está pechada baixo esta operación, e o peche simétrico dunha relación Modelo:Mvar é o seu peche baixo esta relación.
Transitividade
A transitividade defínese pola operación binaria parcial en A×A que mapea (x,y) e (y,z) en (x,z). Unha relación é transitiva se está pechada baixo esta operación, e o peche transitivo dunha relación é o seu peche baixo esta operación.

Unha preorde é unha relación que é reflexiva e transitiva. Dedúcese que o peche transitivo reflexivo dunha relación é a menor preorde que a contén. Do mesmo xeito, o peche simétrico transitivo reflexivo ou o peche de equivalencia dunha relación é a menor relación de equivalencia que a contén.

Outros exemplos

Operador de peche

Nas seccións anteriores considéranse peches para subconxuntos dun determinado conxunto. Os subconxuntos dun conxunto forman un conxunto parcialmente ordenado (poset) desde o punto de vista da inclusión. Os operadores de peche permiten xeneralizar o concepto de peche a calquera conxunto parcialmente ordenado.

Dado un poset Modelo:Mvar cuxa orde parcial se denota con Modelo:Math, un operador de peche en Modelo:Mvar é unha función C:SS é dicir

De forma equivalente, unha función de Modelo:Mvar a Modelo:Mvar é un operador de peche se xC(y)C(x)C(y) para todos osx,yS.

Un elemento de Modelo:Mvar está pechado se é o seu propio peche, é dicir, se x=C(x). Por idempotencia, un elemento está pechado se e só se é o peche dalgún elemento de Modelo:Mvar.

Un exemplo é o operador de peche topolóxico; na caracterización de Kuratowski, os axiomas K2, K3, K4' corresponden ás propiedades definitorias anteriores. Un exemplo que non funciona en subconxuntos é a función teito, que asigna cada número real Modelo:Mvar ao enteiro máis pequeno que non sexa menor que Modelo:Mvar.

Operador de peche e conxuntos pechados

Un peche sobre os subconxuntos dun conxunto dado pode ser definido por un operador de peche ou por un conxunto de conxuntos pechados que é estábel baixo a intersección e inclúe o conxunto dado. Estas dúas definicións son equivalentes.

Notas

Modelo:Reflist

Véxase tamén

Outros artigos

Ligazóns externas


Modelo:Control de autoridades