Baricentro (astronomía)

De testwiki
Saltar á navegación Saltar á procura

Modelo:AnchorModelo:Multiple image

En astronomía, o baricentro é o centro de masas de dous ou máis corpos que orbitan entre si e é o punto arredor do cal os corpos orbitan. Un baricentro é un punto dinámico, non un obxecto físico. É un concepto importante en campos como a astronomía e a astrofísica. A distancia desde o centro de masas dun corpo ata o baricentro pódese calcular como un problema de dous corpos.

Se un dos dous corpos en órbita é moito máis masivo que o outro e os corpos están relativamente preto un do outro, o baricentro normalmente situarase dentro do obxecto máis masivo. Neste caso, en lugar de que os dous corpos parezan orbitar un punto entre eles, o corpo menos masivo parecerá orbitar arredor do corpo máis masivo, mentres que o corpo máis masivo pode observarse que se tambalea lixeiramente. Este é o caso do sistema Terra-Lúa, cuxo baricentro está situado en media a 4671 km do centro da Terra, que é o 74% do radio da Terra. Cando os dous corpos teñen masas semellantes, o baricentro xeralmente situarase entre eles e ambos os corpos orbitarán ao seu redor. Este é o caso de Plutón e Caronte, un dos satélites naturais de Plutón, así como de moitos asteroides binarios e estrelas binarias. Cando o obxecto menos masivo está lonxe, o baricentro pódese localizar fóra do obxecto máis masivo. Este é o caso de Xúpiter e do Sol; malia o Sol ser mil veces máis masivo que Xúpiter, o seu baricentro está lixeiramente fóra do Sol debido á distancia relativamente grande entre eles.

En astronomía, as coordenadas baricéntricas son coordenadas non rotativas coa orixe no baricentro de dous ou máis corpos. O Sistema de Referencia Celeste Internacional (ICRS) é un sistema de coordenadas baricéntrico centrado no baricentro do Sistema Solar.

Problema de dous corpos

Modelo:Artigo principal O baricentro é un dos focos da órbita elíptica de cada corpo. Este é un concepto importante nos campos da astronomía e da astrofísica. Nun caso sinxelo de dous corpos, a distancia do centro do primario ao baricentro, r1, vén dada por:

r1=am2m1+m2=a1+m1m2

onde :

  • r1 é a distancia dende o centro do corpo 1 ata o baricentro
  • a é a distancia entre os centros dos dous corpos
  • m1 e m2 son as masas dos dous corpos.

O semieixe maior da órbita do secundario, r2, vén dado por Modelo:Nowrap.

Cando o baricentro está situado dentro do corpo máis masivo, ese corpo parecerá "bambalearse" en lugar de seguir unha órbita discernible.

Exemplos primarios-secundarios

A seguinte táboa recolle algúns exemplos do Sistema Solar. As cifras son redondeadas ata tres cifras significativas. Os termos "primario" e "secundario" úsanse para distinguir entre os participantes implicados, sendo o maior o principal e o menor o secundario.

Modelo:Plainlist



Primario m1

(ME)
Secundario m2

(ME)
a

(km)
r1

(km)
R1

(km)
Modelo:Sfrac
Terra 1 Lúa 0.0123 384,000 4,670[1] 6,380 0.732Modelo:Efn
Plutón 0.0021 Caronte 0.000254
19,600 2,110 1,150 1.83Modelo:Efn
Sol 333,000 Terra 1 Modelo:Longitem 449 696,000 0.000646Modelo:Efn
Sun 333,000 Xúpiter 318
Modelo:Longitem 742,000 696,000 1.07[2]Modelo:Efn
Sun 333,000 Saturno 95.2 Modelo:Longitem 409,000 696,000 0.588


Exemplo co Sol

Movemento do baricentro do Sistema Solar en relación co Sol.

Se Modelo:Nowrap, o cal é certo para o Sol e calquera planeta, a razón Modelo:Sfrac aproxímase a:

aR1m2m1.

Polo tanto, o baricentro do sistema Sol-planeta estará fóra do Sol só se:

aRmplanetam>1amplaneta>Rm2.3×1011mkm1530mAU

é dicir, cando o planeta é masivo e está lonxe do Sol.

Correccións relativistas

Na mecánica clásica (gravitación newtoniana), esta definición simplifica os cálculos e non introduce problemas coñecidos. Na relatividade xeral (gravitación einsteiniana), xorden complicacións porque, aínda que é posíbel, dentro de aproximacións razoables, definir o baricentro, atopamos que o sistema de coordenadas asociado non reflicte totalmente a desigualdade dos tempos de reloxo en diferentes lugares. Brumberg explica como establecer coordenadas baricéntricas na relatividade xeral.

Os sistemas de coordenadas implican unha coordenada horaria mundial, é dicir, unha coordenada horaria global que podería configurarse mediante telemetría. Os reloxos individuais non estarán de acordo con este estándar, porque están suxeitos a diferentes potenciais gravitacionais ou móvense a distintas velocidades, polo que o tempo do mundo debe estar sincronizado con algún reloxo ideal que se supón que está moi afastado de todao propio sistema gravitatorio. Este estándar de tempo chámase Tempo de Coordenadas Baricéntricas (TCB).

Notas

Modelo:Reflist Modelo:Reflist

Véxase tamén

Modelo:Commonscat

Outros artigos


Modelo:Control de autoridades