Superficie: Diferenzas entre revisións
imported>Atobar m Desfixéronse as edicións de 85.61.12.179 (conversa); cambiado á última versión feita por BanjoBot 2.0 |
(Sen diferenzas.)
|
Revisión actual feita o 14 de novembro de 2018 ás 19:30
En matemáticas, unha superficie é un obxecto topolóxico que, intuitivamente falando, é localmente "parecido" (homeomorfo) ao plano cartesiano , é dicir para cada punto P na superficie hai unha veciñanza de P na superficie que é homeomorfa a un disco aberto de e isto dános un sistema local de coordenadas contorna ao momento na superficie. Podemos chamar ao homeomorfismo local que vai da superficie a como carta e ao inverso (deste homeomorfismo) parametrización. Non sempre é posible parametrizar unha superficie cun único homeomorfismo local.
Exemplos: A esfera, o touro, o plano proxectivo, a botella de Klein, son instancias de superficies pechadas, é dicir sen fronteira.
Un disco (en ), un cilindro e a banda de Möbius son exemplos de superficies con fronteira.
Tamén as superficies se distinguen segundo sexan orientables ou non. Dise que unha superficie é non orientable se contén polo menos unha subsuperficie que é homeomorfa a unha banda de Möbius pechada. Caso contrario dise orientable.